Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142.319
Filtrar
1.
Cell Death Dis ; 15(3): 183, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429301

RESUMO

Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.


Assuntos
Antineoplásicos , Apoptose , Carbamatos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Proteína bcl-X , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Apoptose/efeitos dos fármacos
2.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516760

RESUMO

Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart­related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti­inflammatory, antioxidant, cardio­cerebral vascular protective and anti­apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP­induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin­1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2­induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.


Assuntos
Aminopiridinas , Apigenina , Cardiotoxicidade , Doxorrubicina , Ferroptose , Sulfonamidas , Animais , Ratos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidade , Ferroptose/efeitos dos fármacos , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos
3.
Int Immunopharmacol ; 130: 111811, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457929

RESUMO

Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs), leading to irreversible visual function impairment. Sustained increase in intraocular pressure represents a major risk factor for glaucoma, yet the underlying mechanisms of RGC apoptosis induced by intraocular pressure remains unclear. This study aims to investigate the role of TRPV4 in RGC apoptosis in a rat model of chronic ocular hypertension (COH) and the underlying molecular mechanism. In the COH rat models, we evaluated the visual function, retinal pathological changes and RGC apoptosis. TRPV4 expression and downstream signaling molecules were also detected. We found that RGC density decreased and RGC apoptosis was induced in COH eyes compared with control eyes. TRPV4 expression increased significantly in response to elevated IOP. TRPV4 inhibition by the TRPV4 antagonist HC-067047 (HC-067) suppressed RGC apoptosis and protected visual function. HC-067 treatment upregulated the phosphorylation of CaMKII in both control and COH eyes. Finally, HC-067 treatment suppressed the production of TNF-α induced by ocular hypertension. The TRPV4 antagonist HC-067 might suppress RGC apoptosis by regulating the activation of CaMKII and inhibiting the production of TNF-α in the COH model. This indicated that TRPV4 antagonists may be a potential and novel therapeutic strategy for glaucoma.


Assuntos
Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Morfolinas , Hipertensão Ocular , Pirróis , Células Ganglionares da Retina , Canais de Cátion TRPV , Fator de Necrose Tumoral alfa , Animais , Ratos , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Hipertensão Ocular/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Canais de Cátion TRPV/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico
4.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538058

RESUMO

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Assuntos
Diosgenina , Neoplasias Ovarianas , PTEN Fosfo-Hidrolase , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima
5.
Med Oncol ; 41(4): 83, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436810

RESUMO

Prostate cancer is one of the most common cancers in men. Given the diverse nature of prostate cancer and its tendency to respond differently to various treatments, combination therapies are often employed to enhance outcomes. In this study, the synergetic efficiency of chemotherapeutic drug Navitoclax and heat shock protein 90 (Hsp90) inhibitor Debio-0932 was evaluated in human prostate cancer cell line (PC3). Our results indicated that Navitoclax-Debio-0932 combination exhibited synergistic activity in PC3 cells at concentrations lower than IC50 values. The combination of Navitoclax and Debio-0932 decreased PC3 cell viability in a dose dependent manner at 48 h. To investigate the apoptotic potential of the Navitoclax-Debio-0932 combination against prostate cancer cells, the mRNA and protein expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, Apaf-1, Casp-3, Casp-7, and Casp-9) were measured using RT-PCR and ELISA assay. Furthermore, the cleavage activity of Casp-3 was determined by colorimetric assay. The results revealed that Navitoclax-Debio-0932 combination potently induced intrinsic apoptotic pathway in PC3 cells rather than using drugs alone. The combined treatment of Navitoclax and Debio-0932 displayed synergistic cytotoxic and apoptotic effects on prostate cancer cells, presenting a promising approach for combination therapy in prostate cancer.


Assuntos
Compostos de Anilina , Antineoplásicos , Neoplasias da Próstata , Sulfonamidas , Humanos , Masculino , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Próstata , Neoplasias da Próstata/tratamento farmacológico , Transdução de Sinais
6.
Neurochem Res ; 49(5): 1212-1225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381247

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons. LncRNA small nucleolar RNA host gene 14 (SNHG14) was found to promote neuron injury in PD. Here, we investigated the mechanisms of SNHG14 in PD process. In vivo or in vitro PD model was established by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice or 1-methyl-4-phenylpyridinium (MPP +)-stimulated SK-N-SH cells. The expression of genes and proteins was measured by qRT-PCR and Western blot. In vitro assays were conducted using ELISA, CCK-8, colony formation, EdU, flow cytometry, and Western blot assays, respectively. The oxidative stress was evaluated by determining the production of superoxide dismutase (SOD) and malondialdehyde (MDA). The direct interactions between miR-375-3p and NFAT5 (Nuclear factor of activated T-cells 5) or SNHG14 was verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. SNHG14 and NFAT5 were elevated, while miR-375-3p was decreased in MPTP-mediated PD mouse model and MPP + -induced SK-N-SH cells. Knockdown of SNHG14 or NFAT5, or overexpression of miR-375-3p reversed MPP + -induced neuronal apoptosis, inflammation, and oxidative stress. Mechanistically, SNHG14 directly bound to miR-375, which targeted NFAT5. Inhibition of miR-375-3p abolished the inhibitory activity of SNHG14 knockdown on MPP + -evoked neuronal damage. Besides that, NFAT5 up-regulation counteracted the effects of miR-375-3p on MPP + -mediated neuronal damage. SNHG14 contributed to MPP + -induced neuronal injury by miR-375/NFAT5 axis, suggesting a new insight into the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos , MicroRNAs , Doença de Parkinson , RNA Longo não Codificante , Animais , Camundongos , 1-Metil-4-fenilpiridínio , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Curr Mol Pharmacol ; 17: e18761429273223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389419

RESUMO

Mitosis of somatic cells produces a daughter cell. Apoptosis, a naturally programmed cellular death mechanism, kills abnormal cells produced by mitosis. Cancer can develop when this equilibrium is disrupted, either by an upsurge in cell propagation or a reduction in tissue demise. Cancer therapy aims to cause cancer cells to die while inflicting little harm to healthy cells. This review of apoptotic mechanism processes improves our understanding of how certain malignancies begin and develop. The current cancer treatments can operate either by inducing apoptosis or causing direct cell damage. An insight into the resistance to apoptosis may explicate why malignancy treatments fail in some situations. New therapies grounded on our understanding of apoptotic processes are being developed to induce apoptosis of cancer cells while limiting the simultaneous death of normal cells. Various biological activities require redox equilibrium to function properly. Antineoplastic medications that cause oxidative stress by raising ROS and blocking antioxidant mechanisms have recently attracted much interest. The rapid accumulation of ROS impairs redox balance and damages cancer cells severely. Here, we discuss ROS-instigating malignancy therapy and the antineoplastic mechanism used by prooxidative drugs.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
9.
Cell Death Dis ; 15(2): 123, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336804

RESUMO

Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.


Assuntos
Apoptose , Conexinas , Fluorenos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Ciclopentanos/farmacologia
10.
Nature ; 626(8000): 874-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297121

RESUMO

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mutação , Doenças Neurodegenerativas , Estresse Fisiológico , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Ataxia/genética , Sobrevivência Celular/efeitos dos fármacos , Demência/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
11.
Life Sci ; 338: 122406, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176583

RESUMO

AIMS: Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS: CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS: Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE: CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.


Assuntos
Curcumina , Neoplasias do Endométrio , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Estresse do Retículo Endoplasmático , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Piperidinas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
12.
Bioorg Chem ; 143: 107056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183685

RESUMO

Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.


Assuntos
Antineoplásicos , Chalconas , Neoplasias do Colo , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Linhagem Celular Tumoral , Chalconas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glutationa , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Tubulina (Proteína)/farmacologia , Autofagia/efeitos dos fármacos
13.
J Physiol Biochem ; 80(1): 53-65, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37906422

RESUMO

Aspartame (ASP) as an important sugar substitute is widely used in pharmaceutical and food processing. Here, we compared the effects of ASP and sucrose on mice pancreatic islet cells in vivo and observed that ASP with the condition of high concentration and long-term exposure (HASP) could cause insulin secretion (500 mg/kg for 1 month). Next, we conducted iTRAQ mass spectrometry to profile the global phosphoproteome and found that phosphorylation of zipper-interacting protein kinase (ZIPK) in murine pancreatic islet tissues were induced at Thr197, Thr242, Thr282, and Ser328 by high-sucrose (HS) treatment, but only induced at Thr197 and Ser328 by HASP treatment. Simultaneously, phosphorylation of STAT3 could be induced at Tyr705 and Ser727 by HS but not by HASP. Furthermore, presence of activated STAT3 accompanied with autophagy was observed in HS treatment. In turn, the inactivation of STAT3 as well as enhanced expression of caspase 3 was observed in HASP treatment. We generated Thr242APro and Thr282Pro on ZIPK using CRISPR-Cas9 in ß-TC3 cells and found the weakened interaction with STAT3 as well as the reduced phosphorylation of STAT3 even under HS stimulation. Finally, we observed that ankyrin repeat domain containing 11 (ANKRD11) could interact with ZIPK and play an inhibitory role in the phosphorylation of Thr242APro and Thr282Pro of ZIPK. However, HASP can induce the retention of ANKRD11 in the cytoplasm by phenylpyruvic acid (the metabolite of ASP). Taken together, this study determined that ASP with high concentration and long-term exposure could lead to caspase-dependent apoptosis of pancreatic islet cells through ANKRD11/ZIPK/STAT3 inhibition. Our results give evidence of adverse effects of aspartame on islet cells in some extreme conditions, which might help people to reconsider the biosafety of non-nutritive sweeteners.


Assuntos
Apoptose , Aspartame , Ilhotas Pancreáticas , Animais , Camundongos , Apoptose/efeitos dos fármacos , Aspartame/efeitos adversos , Aspartame/metabolismo , Caspase 3/metabolismo , Proteínas Quinases Associadas com Morte Celular/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Fosforilação , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/metabolismo
14.
Hear Res ; 441: 108919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043402

RESUMO

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.


Assuntos
Fator de Indução de Apoptose , Apoptose , Perda Auditiva Central , NAD , Células Receptoras Sensoriais , Perda Auditiva Central/genética , Perda Auditiva Central/metabolismo , Perda Auditiva Central/fisiopatologia , Apoptose/efeitos dos fármacos , NAD/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Dimerização , Mitocôndrias/efeitos dos fármacos , Células HEK293 , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Calpaína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Genótipo , Humanos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo
15.
Ecotoxicol Environ Saf ; 269: 115742, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039849

RESUMO

The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.


Assuntos
Rim , Estresse Oxidativo , Selenometionina , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Selenometionina/farmacologia , Aflatoxina B1/toxicidade , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103757

RESUMO

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Assuntos
Apoptose , Calcimicina , Cálcio , Receptores Purinérgicos P2X4 , Células MCF-7 , Linhagem Celular Tumoral , Humanos , Calcimicina/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Espaço Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Int J Cardiol ; 395: 131426, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37813285

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is a pathological process that follows immediate revascularization of myocardial infarction and is characterized by exacerbation of cardiac injury. Loganin, a monoterpene iridoid glycoside derived from Cornus officinalis Sieb. Et Zucc, can exert cardioprotective effects in cardiac hypertrophy and atherosclerosis. However, its role in ischemic heart disease remains largely unknown. METHODS: Considering that Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) has a protective effect on the heart, we developed a mouse model of MIRI to investigate the potential role of this pathway in loganin-induced cardioprotection. RESULTS: Our results showed that treatment with loganin (20 mg/kg) prevented the enlargement of myocardial infarction, myocyte destruction, serum markers of cardiac injury, and deterioration of cardiac function induced by MIRI. Myocardium subjected to I/R treatment exhibited higher levels of oxidative stress, as indicated by an increase in malondialdehyde (MDA) and dihydroethidium (DHE) density and a decrease in total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD), whereas treatment with loganin showed significant attenuation of I/R-induced oxidative stress. Loganin treatment also increased the expression of anti-apoptotic Bcl-2 and reduced the expression of caspase-3/9, Bax, and the number of TUNEL-positive cells in ischemic cardiac tissue. Moreover, treatment with loganin triggered JAK2/STAT3 phosphorylation, and AG490, a JAK2/STAT3 inhibitor, partially abrogated the cardioprotective effects of loganin, indicating the essential role of JAK2/STAT3 signaling in the cardioprotective effects of loganin. CONCLUSIONS: Our data demonstrate that loganin protects the heart from I/R injury by inhibiting I/R-induced oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Apoptose/efeitos dos fármacos , Janus Quinase 2/efeitos dos fármacos , Janus Quinase 2/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
18.
In Vitro Cell Dev Biol Anim ; 59(10): 739-746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38038884

RESUMO

Epigallocatechin gallate (EGCG), a bioactive component in tea, displays broad anti-cancer effects. Our study was designed to evaluate the anti-cancer effects of EGCG on ovarian cancer and explored the underlying molecular mechanisms. To evaluate the in vitro inhibitory effects of EGCG against ovarian cancer, MTT assay, colony formation assay, apoptosis assay, and wound healing assay, were performed. Besides, the inhibitory effects of EGCG on tumor growth in the xenograft animal model were evaluated by measuring tumor volume and tumor weight. Moreover, Western blotting and qPCR were used to evaluate the levels of target genes and proteins. Treatment with EGCG inhibited cell migration and cell survival, and promoted cell apoptosis in A2780 and SKOV3 cells. Interestingly, treatment with EGCG inhibited the tumor growth in the xenograft animal model. The mechanistic study revealed that treatment with EGCG induced the activation of FOXO3A and suppressed the expression of c-Myc both in vitro and in vivo. Our findings demonstrate that EGCG suppress ovarian cancer cell growth, which may be due to its regulation on FOXO3A and c-Myc.


Assuntos
Proteína Forkhead Box O3 , Ácido Gálico , Neoplasias Ovarianas , Chá , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Apoptose/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Feminino , Animais , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sobrevivência Celular , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Proteína Forkhead Box O3/metabolismo , Xenoenxertos , Chá/química
19.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127423

RESUMO

Germline CTLA-4 deficiency causes severe autoimmune diseases characterized by dysregulation of Foxp3+ Tregs, hyper-activation of effector memory T cells, and variable forms autoimmune cytopenia including gradual loss of B cells. Cancer patients with severe immune-related adverse events (irAE) after receiving anti-CTLA-4/PD-1 combination immunotherapy also have markedly reduced peripheral B cells. The immunological basis for B cell loss remains unexplained. Here, we probe the decline of B cells in human CTLA-4 knock-in mice by using anti-human CTLA-4 antibody Ipilimumab conjugated to a drug payload emtansine (Anti-CTLA-4 ADC). The anti-CTLA-4 ADC-treated mice have T cell hyper-proliferation and their differentiation into effector cells which results in B cell depletion. B cell depletion is mediated by both CD4 and CD8 T cells and at least partially rescued by anti-TNF-alpha antibody. These data revealed an unexpected antagonism between T and B cells and the importance of regulatory T cells in preserving B cells.


Assuntos
Abatacepte , Linfócitos B , Linfócitos T Reguladores , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Abatacepte/farmacologia , Animais , Camundongos , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Depleção Linfocítica , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Apoptose/efeitos dos fármacos , Imunoglobulinas/sangue , Imunoglobulinas/imunologia , Células CHO , Cricetulus , Camundongos Endogâmicos C57BL , Masculino , Feminino
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1394-1402, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846690

RESUMO

OBJECTIVE: To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma. METHODS: Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR). RESULTS: Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05). CONCLUSION: Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Assuntos
Antineoplásicos , Bortezomib , Linfoma de Burkitt , Receptores CXCR , Xantonas , Humanos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/imunologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/imunologia , Bortezomib/imunologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores CXCR/biossíntese , Receptores CXCR/imunologia , RNA Mensageiro , Serina-Treonina Quinases TOR , Xantonas/imunologia , Xantonas/farmacologia , Xantonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...